Tornado disaster assessment of rubber plantation in western Hainan Island using Landsat and Sentinel-2 time series images

Bangqian Chen¹, Tin Yun², Fen An¹, Zhixiang Wu¹

- 1. Rubber Research Institute (RRI), CATAS, Hainan Island, China.
 - 2. Nanjing Forestry University, Nanjing, China.

<u>chbq40@163.com</u>

Wednesday, June 24, 2020

1. Introduction

Rubber plantation (RP) in China

Tornado in western Hainan Island

2019/8/29, **Podul** triggered **tornado** (EF2 level, 49-74m/s) in Hainan, killed 8 people, destroyed many rubber plantation, damage reached \$2.27 million.

Disaster assessment, challenges and opportunities

Remote sensing is the most important way for large scale disaster assessment

the second second second second

Challenges

A case study of monitoring damage of rubber plantation caused by Tornado using remote sensing big data.

Why monitor Tornado?

- Latest disaster with Landsat 7/8 and twin satellite of Sentinel-2A/B
 - S2-A/B revisiting every 5 days
 - Landsat revisiting every 16 days
 - Spatial resolution 10, 20, 30-m
- Damage characteristics are similar to typhoons
 - Fast physical destruction

1. When is the ideal monitoring time?

2. **How** to using the dense time series images?

3. ind

and the second and the second

3. What are the best monitoring indicators?

2. Material and methods

Study area and field survey

AND THE PARTY OF THE PARTY OF

Field survey were carried quickly in the next days (8/29 and 8/30).

Study area and field survey

Mark damage plantations using Google Earth

Plantations in red polygon were updated between 2019/8/29 and 2019/11/17 Plantations in blue polygon were updated between 2019/11/17 and 2020/1/15

Satellite imagery

Landsat 7/8 Collection 1 TOA reflectance, from USGS

- 30-m resolution
- Revising every 16 days

Sentinel-2 A/B L1C TOA, from ESA

- 10, 20, 60-m resolution
- Revising every 5 days
- Landsat 7, lunched in 1999
- Landsat 8, lunched in 2015
- Sentinel-2A, lunched in 2015
- Sentinel-2B, lunched in 2017

Image count during 2015-2019 in the study area (40 x 70 km)

Imagery pre-processing

Quality controlling	 Cloud masking and scan-off line excluding (ETM+) Bands harmonization 	
Vegetation	$NDVI = \frac{\rho_{NIR} - \rho_{Red}}{\rho_{NIR} + \rho_{Red}}$	$LSWI = \frac{\rho_{NIR} - \rho_{SWIR1}}{\rho_{NIR} + \rho_{SWIR1}}$
calculation	$EVI = 2.5 \times \frac{\rho_{NIR} - \rho_{Red}}{\rho_{NIR} + 6 \times \rho_{Red} - 7.5 \times \rho_{Blue} + 1}$	$NBR = \frac{\rho_{NIR} - \rho_{SWIR2}}{\rho_{NIR} + \rho_{SWIR2}}$
	N <i>T</i> / 1 / 1 / 1 / /	1 •,

Image composite • Max / min / median / latest / mean value composite

3. Results and discussion

Cloud-free image coverage assessment

Composite methods after tornado

Composite methods after tornado

Time window test based on best indicators

- Indicators become **stable** about **40 days**
- Recommend 60 days window, Max-Min best, then is Max-Med by ground reference.

Spatial change of EVI/LSWI values

- All maps clear show tornado route except EVI_{MaxMin};
- Lots of noise in difference image come from Max-Min composite images
- Max-Med composite show better performance
- EVI_{MaxMed} is slightly better than LSWI_{MaxMed}

Spatial change of EVI/LSWI percent value

- All maps clear show tornado route except EVI_{MaxMin};
- Lots of noise in difference image come from Max-Min composite images
- Max-Med composite show better performance
- LSWI_{MaxMed} is slightly better than EVI_{MaxMed}

Recommend ways for tornado damage assessment

- All maps clear show tornado route except EVI_{MaxMin};
- Lots of noise in difference image come from Max-Min composite images
- Max-Med composite show better performance
- LSWI_{MaxMed} is slightly better than EVI_{MaxMed}

Recommend ways for tornado damage assessment

All maps clear show
 tornado route except

EVI_{MaxMin};

- Lots of noise in difference image come from Max-Min composite images
- Max-Med composite show better

performance

• LSWI_{MaxMed} is slightly better than EVI_{MaxMed}

County Border

<-70 -55

-40

>0

>0

<-55 -35 -25 -18

-12

Km

• Using Landsat 7/8 and Sentinel-2A/B images of about 60 days;

-5

>-5

- Max (Before)-Median (After) composite method;
- Using EVI or LSWI percent value as indicator;

-30 -20 -15 -10

Damage area statistics

- Two algorithms agree well with most towns;
- Qifang town rank the top, loss about 300 ha of rubber plantation;
- Total damage area
 ranges from 576 to 712
 ha;
- Manual adjustment is necessary if need very high accuracy damage data.

4. Conclusion

Take home message

Increasingly extreme weather and natural disasters under climate change pose huge challenges to rubber industry.

Remote sensing big data brings lots of opportunities for disaster assessment

For tornado/typhoon disaster of rubber plantation, we recommend:

- Using Landsat 7/8 and Sentinel-2A/B images of about 60 days;
- Max (Before)-Median (After) composite method;
- Using EVI or LSWI percent value as indicator;

Thank you! Ouestion and Suggestion?